Remote sensing scene classification is a critical task in computer vision, which involves categorizing land areas into predefined classes based on very high-resolution remotely sensed data. Deep learning architectures such as classical convolutional and residual neural networks as well as relatively new attention-based networks, have shown great potential in achieving high accuracy in remote sensing scene classification tasks. With the increasing availability of remote sensing data and the advancements in deep learning techniques, modern deep learning architectures such as ConvNeXt and vision transformers have shown tremendous potential in achieving high accuracy in this task. In this paper, we present a comprehensive evaluation of modern deep-learning architectures for remote sensing scene classification. Preliminary experiments showed that the models from the ResNet family are better than modern networks in fulfilling the tradeoff between accuracy and speed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evaluation of Modern Deep Learning Architectures in Remote Sensing Scene Classification


    Beteiligte:
    Taskin, Gulsen (Autor:in) / Kaya, Huseyin (Autor:in)


    Erscheinungsdatum :

    07.06.2023


    Format / Umfang :

    1519583 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Explaining the Effects of Clouds on Remote Sensing Scene Classification

    Gawlikowski, Jakob / Ebel, Patrick / Schmitt, Michael et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2022

    Freier Zugriff


    A systematic evaluation of recent deep learning architectures for fine-grained vehicle classification

    Valev, Krassimir / Schumann, Arne / Sommer, Lars et al. | SPIE | 2018



    Traffic scene sound classification method and system based on deep learning

    QIU GUOQING / LI HONGBIN / ZHANG WENBIN et al. | Europäisches Patentamt | 2021

    Freier Zugriff