Compared to conventional ballistic vehicles and cruise vehicles, hypersonic vehicles exhibit unprecedented and clearly superior abilities. Hypersonic glide vehicles (HGVs) travel at speeds faster than Mach 5, enabling them to fly at least one mile per second. Furthermore, they possess maneuvering capabilities that assist them in evading defense systems, increasing precision of their impact points, and hindering prediction of their final destinations. In this paper, we examine machine learning methods to automatically identify different hypersonic glide vehicles and a ballistic reentry vehicle (RV) based on trajectory segments. Trained on aerodynamic state estimates, our methods analyze key vehicle maneuvers to classify vehicles with high accuracy. We also identify vehicles with higher accuracy as time after liftoff (TALO) increases and more data becomes available for analysis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Machine Learning Approach to Classify Hypersonic Vehicle Trajectories


    Beteiligte:
    Bartusiak, Emily R. (Autor:in) / Nguyen, Nhat X. (Autor:in) / Chan, Moses W. (Autor:in) / Comer, Mary L. (Autor:in) / Delp, Edward J. (Autor:in)


    Erscheinungsdatum :

    06.03.2021


    Format / Umfang :

    12630083 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimal Trajectories of Hypersonic Vehicle for Global Reach

    Kang, B. / Tang, S. / Starkey, R. et al. | British Library Conference Proceedings | 2008


    Optimal Trajectories of Hypersonic Vehicle for Global Reach

    Kang, Bing-nan / Tang, Shuo / Starkey, Ryan | AIAA | 2008




    Optimal trajectories for hypersonic launch vehicles

    Ardema, Mark D. / Bowles, Jeffrey V. / Whittaker, Thomas | NTRS | 1992