To address the challenges of accuracy and speed in real-time face recognition, we propose an end-to-end system based on deep learning. The system adopts a front-end and back-end separation architecture, realizing real-time recognition through modules such as video stream face detection, tracking, feature extraction, and comparison. We improve the FaceNet model and propose FaceNet-Local, enhancing the model’s robustness by introducing local feature representation. The system is comprehensively evaluated on benchmark datasets like LFW and real-world scenarios, achieving leading levels in offline recognition accuracy and online real-time performance. For instance, FaceNet-Local achieves a Rank-1 recognition rate of $\mathbf{9 9. 5 3 \%}$ on LFW, with an end-to-end latency controlled within 150 ms. Future plans involve further algorithm optimization to enhance small-sample learning capability and expand applications in smart communities, security monitoring, etc. We believe this system provides valuable references for the development of real-time face recognition technology.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Design and Implementation of Real-time Face Recognition System Using Deep Learning


    Beteiligte:
    Wang, Xi (Autor:in)


    Erscheinungsdatum :

    23.10.2024


    Format / Umfang :

    522912 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Implementation of real-time human face recognition [3159-39]

    Liu, H. / Wu, M. / Cheng, G. et al. | British Library Conference Proceedings | 1997


    Sketch face Recognition using Deep Learning

    Rubeena / Kavitha, E. | IEEE | 2021


    Real-Time Emotion Recognition Using Deep Learning Algorithms

    Mettiti, Abderrahmane El / Oumsis, Mohammed / Chehri, Abdellah et al. | IEEE | 2022


    Real-Time Driving License Verification System Using Face Recognition

    Dhabe, Priyadarshan / Bhat, Sneha / Shivankar, Ishan et al. | IEEE | 2024