Train operation control under virtual coupling has become an efficient method to increase the capacity of the railway, especially in the scenario of emergencies represented by the temporary speed restriction. To realize safe, efficient, and energy-saving operations for the following train under virtual coupling, this paper proposes a deep reinforcement learning method for follower speed trajectory optimization based on the given speed trajectory of the leader. The agent outputs the continuous values in [−1, 1] to control the follower to brake or accelerate. A collision-avoidance protection mechanism is conducted in the learning process to ensure feasible action. Numerical experiments are carried out based on real railway data. The results indicate that the proposed method can achieve a more energy-efficient process of tight and safe following between the adjacent trains in less computation time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    DDPG-Based Energy-Efficient Train Speed Trajectory Optimization Under Virtual Coupling


    Beteiligte:
    Liu, Xuan (Autor:in) / Zhou, Min (Autor:in) / Tan, Ligang (Autor:in) / Dong, Hairong (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    474408 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust cooperative train trajectory optimization with stochastic delays under virtual coupling

    Wang, Pengling / Zhu, Yongqiu / Zhu, Wei | Wiley | 2023

    Freier Zugriff

    Robust cooperative train trajectory optimization with stochastic delays under virtual coupling

    Pengling Wang / Yongqiu Zhu / Wei Zhu | DOAJ | 2023

    Freier Zugriff


    Partial Train Speed Trajectory Optimization

    Ying, Peiran / Zeng, Xiaoqing / Shen, Tuo et al. | IEEE | 2022


    Time-Space-Based Virtual Coupling High-Speed Train Separation Model and Trajectory Planning

    Dun, Yichen / ShangGuan, Wei / Song, Hongyu et al. | IEEE | 2024