We present a method for automatically selecting the best filter to treat poor quality printed documents using image quality assessment. We introduce five quality measures to obtain information about the quality of the images, and morphological filters to improve their quality. A training set of 370 images was used to develop the system. Experimental results on the test set show a significant improvement in the recognition rate from 73.24% using no filter at all to 93.09% after applying a filter that was automatically selected.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automatic filter selection using image quality assessment


    Beteiligte:
    Souza, A. (Autor:in) / Cheriet, M. (Autor:in) / Naoi, S. (Autor:in) / Suen, C.Y. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    232237 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automatic Filter Selection Using Image Quality Assessment

    Souza, A. / Cheriet, M. / Naoi, S. et al. | British Library Conference Proceedings | 2003


    Efficient Content-Based Image Retrieval Using Automatic Feature Selection

    Swets, D. L. / Weng, J. J. / IEEE; Computer Society; Technical Committee for Pattern Analysis and Machine Intelligence | British Library Conference Proceedings | 1995


    Wavelet filter selection by clustering of image measures

    Patuck, N. / McLernon, D. | IEEE | 2003


    Wavelet Filter Selection by Clustering of Image Measures

    Patuck, N. / McLernon, D. / IEEE et al. | British Library Conference Proceedings | 2003


    Modern Image Quality Assessment

    Wang, Zhou / Bovik, Alan C. | TIBKAT | 2006