Recently, with the rapid development of autonomous vehicles and connected vehicles, the demands of vehicular computing keep continuously growing. We notice a constant and limited onboard computational ability can hardly keep up with the rising requirements of the vehicular system and software application during their long-term lifetime, and also at the same time, the vehicles onboard computation causes an increasingly higher vehicular energy consumption. Therefore, we suppose to build a vehicular edge cloud computing (VECC) framework to resolve such a vehicular computing dilemma. In this framework, potential vehicular computing tasks can be executed remotely in an edge cloud within their time latency constraints. Simultaneously, an effective wireless network resources allocation scheme is one of the essential and fundamental factors for the QoS (quality of Service) on the VECC. In this paper, we adopted a stochastic fair allocation (SFA) algorithm to randomly allocate minimum required resource blocks to admitted vehicular users. The numerical results show a great effectiveness of energy efficiency in VECC.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicular Edge Cloud Computing: Depressurize the Intelligent Vehicles Onboard Computational Power


    Beteiligte:
    Li, Xin (Autor:in) / Dang, Yifan (Autor:in) / Chen, Tefang (Autor:in)


    Erscheinungsdatum :

    01.11.2018


    Format / Umfang :

    1482579 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicular Edge Cloud Computing: Depressurize the Intelligent Vehicles Onboard Computational Power

    Li, Xin / Dang, Yifan / Chen, Tefang | ArXiv | 2019

    Freier Zugriff

    A Novel Device Based Edge-Cloud Architecture for Vehicular Edge Computing

    Raj, P. Herbert / Kumar, P. Ravi / Juwono, Filbert H. | Springer Verlag | 2024


    Resource Management for Intelligent Vehicular Edge Computing Networks

    Duan, Wei / Gu, Xiaohui / Wen, Miaowen et al. | IEEE | 2022


    VECFrame: A Vehicular Edge Computing Framework for Connected Autonomous Vehicles

    Tang, Sihai / Chen, Bruce / Iwen, Harold et al. | IEEE | 2021


    VEHICULAR ONBOARD CONTROL SYSTEM

    MOTOYAMA MAKOTO / USHIRO SHOTA | Europäisches Patentamt | 2024

    Freier Zugriff