Voluminous data with high velocity and variety have resulted in deceiving the security of internet and intranet facilities. The threats are either having some patterns or lack any definite patterns. Therefore, the data arriving at the network have number of features and wide variety of patterns. Firstly, the number of patterns needs to be reduced and then the filtered set of patterns could be used for detecting unknown threats. This paper presents an approach for developing an Intrusion Detection System (IDS) with the help of Principal Component Analysis (PCA) and machine learning algorithms in WEKA environment. The approach yields better performance by making the detection more effective. The results show highertrue positive and lower false positive ratesin comparison to the existing methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Proposed Machine Learning based Scheme for Intrusion Detection


    Beteiligte:


    Erscheinungsdatum :

    01.03.2018


    Format / Umfang :

    2414312 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Role of Machine Learning in Intrusion Detection System: Review

    Haripriya, L. / Jabbar, M.A. | IEEE | 2018


    A Machine Learning Framework for Intrusion Detection in VANET Communications

    Ben Rabah, Nourhene / Idoudi, Hanen | Springer Verlag | 2022


    A Hybrid Machine Learning Based Intrusion Detection System for MIL-STD-1553

    Yunus Emre Çiloğlu / Şerif Bahtiyar | DOAJ | 2024

    Freier Zugriff

    Decentralized Smart Grid System:A Survey On Machine Learning-Based Intrusion Detection Approaches

    Murk, Makhmoor Fiza / Zahid, Noman / Sodhro, Ali Hassan et al. | IEEE | 2022