Many-to-many spacecraft autonomous evasion missions necessitate highly coordinated decision-making among several spacecraft to successfully avoid interceptions. Conventional control methods often struggle to manage the inherent complexity and uncertainty of these missions. In response to this challenge, we employ multi-agent reinforcement learning (MARL) algorithms that draw upon machine learning and game theory concepts. Our work is devoted to implementing MARL to facilitate autonomous and intelligent evasion maneuvers by spacecraft, considering the dynamic nature of the space environment and the multiple agent interactions. We utilize the Satellite Tool Kit (STK) as a simulation environment and assess cutting-edge MARL algorithms, with the goal of showcasing the potential of MARL in complex spacecraft evasion missions. Our research endeavors to enhance the autonomy, adaptability, and mission success rate of spacecraft systems under unpredictable circumstances, thereby facilitating more intelligent and adaptive space exploration.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Decision-Making for Satellite Anti-Interception Missions Leveraging Multi-Agent Reinforcement Learning


    Beteiligte:
    Chen, Zixuan (Autor:in) / Wang, Jianqi (Autor:in) / Wang, Dan (Autor:in) / Yu, Sheng (Autor:in) / Huo, Jing (Autor:in) / Gao, Yang (Autor:in)


    Erscheinungsdatum :

    22.09.2023


    Format / Umfang :

    615542 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-Agent Reinforcement Learning for Multiple Rogue Drone Interception

    Valianti, Panayiota / Malialis, Kleanthis / Kolios, Panayiotis et al. | IEEE | 2023


    Loitering Munition Interception Decision-Making Technology Based on Deep Reinforcement Learning

    Qi, Qingxi / Cai, Zhirong / Sun, Xinke et al. | Springer Verlag | 2025



    A Multi-agent Reinforcement Learning Framework for Coordinated Multi-UAV Interception Strategies

    Chen, Hong / Li, Bochen / Wang, Chenggang et al. | Springer Verlag | 2025


    Supporting UAVs Swarm Missions by Multi-Agent Reinforcement Learning

    Fusco, P. / Porcelli, L. / Palmieri, F. et al. | IEEE | 2025