We present a mathematical formulation for curve and surface reconstruction algorithms by introduction of auxiliary variables. For deformable models and templates, two step iterative algorithms have been often used where, at each iteration, the model is first locally deformed according to the potential data attraction and then globally smoothed. We show how these approaches can be interpreted as the introduction of auxiliary variables and the minimization of a two variables energy. This permits us to transform an implicit data constraint defined by a non convex potential into an explicit convex reconstruction problem. We show some mathematical properties and results on this new auxiliary problem, in particular when the potential is a function of the distance to the closest feature point. We then illustrate our approach for some deformable models and templates and image restoration.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Auxiliary variables for deformable models


    Beteiligte:
    Cohen, L.D. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    646752 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Auxiliary Variables for Deformable Models

    Cohen, L. / IEEE Computer Society / Technical Committee on Pattern Analysis and Machine Intelligence | British Library Conference Proceedings | 1995


    Blended Deformable Models

    DeCarlo, D. / Metaxas, D. / Institute of Electrical and Electronics Engineers; Computer Society | British Library Conference Proceedings | 1994


    Blended deformable models

    DeCarlo / Metaxas | IEEE | 1994


    Monocular 3D Object Detection Utilizing Auxiliary Learning With Deformable Convolution

    Chen, Jiun-Han / Shieh, Jeng-Lun / Haq, Muhamad Amirul et al. | IEEE | 2024


    Parametrically deformable contour models

    Staib, L.H. / Duncan, J.S. | IEEE | 1989