Intelligent and connected vehicles rely on edge computing to offload their perception and planning tasks, so the scheduling of communication and computing resources is critical to the driving safety and efficiency. However, the imbalanced distribution of road traffic and offloading demands impedes the quality of vehicular edge computing. In this paper, we propose a multi-timescale load balancing approach to improve the service quality and resource utility of vehicular edge computing. Specifically, vehicle mobility optimization is leveraged to perform long-term load balancing, and resource allocation is used to achieve real-time load balancing. As the multi-timescale optimization is confronted with the curse of dimensionality, multi-agent deep reinforcement learning is utilized to optimized vehicle mobility and resource allocation in parallel. Experimental results show that the proposed method can significantly reduce the service delay of vehicular edge computing.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Multi-Timescale Load Balancing Approach in Vehicular Edge Computing


    Beteiligte:
    Lin, Tao (Autor:in) / Yuan, Quan (Autor:in) / Li, Jinglin (Autor:in) / Yang, Shu (Autor:in)


    Erscheinungsdatum :

    01.11.2020


    Format / Umfang :

    1638313 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Price-Based Task Offloading for Load-Imbalance Vehicular Multi -Access Edge Computing

    Xie, Jindou / Zheng, Fenghao / Wen, Wanli et al. | IEEE | 2024


    Vehicular Edge Computing for Multi-Vehicle Perception

    Tang, Sihai / Gu, Zhaochen / Fu, Song et al. | IEEE | 2021


    LEO Satellite-Assisted Vehicular Edge Computing

    Li, Caiguo / Shang, Bodong / Feng, Jie et al. | IEEE | 2023