Simultaneous Localization and Mapping (SLAM) can provide pose estimation and map information. It is widely used in Intelligent transportation systems such as smart vending vehicles. However, existing SLAM methods used for vending vehicles rarely focus on indoor environments. We proposed a real-time LiDAR-based SLAM with high accuracy in both outdoor and indoor environments. Our method takes the advantage of Inertial Measurement Unit (IMU) to reduce the distortion of raw data. Corner and planar features are extracted for point cloud registration. Besides, different optimization formulas are applied in different scenes. The proposed method achieves an average error of fewer than 1m in the KITTI Odometry benchmark and has high accuracy in different experiments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Lightweight LiDAR SLAM in Indoor-Outdoor Switch Environments


    Beteiligte:
    Zhang, Geng (Autor:in) / Yang, Chao (Autor:in) / Wang, Weida (Autor:in) / Xiang, Changle (Autor:in) / Li, Ying (Autor:in)


    Erscheinungsdatum :

    28.10.2022


    Format / Umfang :

    4751153 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    D3VIL-SLAM: 3D Visual Inertial LiDAR SLAM for Outdoor Environments

    Frosi, Matteo / Matteucci, Matteo | IEEE | 2023


    6D SLAM-3D mapping outdoor environments

    Nuchter, A. / Lingemann, K. / Hertzberg, J. et al. | British Library Online Contents | 2007




    Map Management Approach for SLAM in Large-Scale Indoor and Outdoor Areas

    Ehlers, Simon F. G. / Stuede, Marvin / Nuelle, Kathrin et al. | BASE | 2020

    Freier Zugriff