To improve both efficiency and safety of automatic driving in complex traffic scenarios, autonomous vehicles need to have the ability to predict the future trajectories of vehicles. The interaction among vehicles in real traffic scenarios makes the trajectory prediction of vehicles challenging. By utilizing the historical trajectory of the targeted vehicle and the surrounding environment information, this paper proposes a coupling LSTM model in order to effectively predict the future trajectories of vehicles. The proposed model predicts the observable motion intentions of vehicles, and builds grids for the targeted vehicles to extract the implied space and intention information of the neighboring vehicles. Experiment results verify the proposed model in contrast to other basic models in real traffic scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Intelligent Prediction of Mobile Vehicle Trajectory Based on Space-Time Information


    Beteiligte:
    Guan, Dong (Autor:in) / Zhao, Hui (Autor:in) / Zhao, Long (Autor:in) / Zheng, Kan (Autor:in)


    Erscheinungsdatum :

    01.04.2019


    Format / Umfang :

    1003285 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicle trajectory prediction method based on time-space fusion attention

    CHEN CHUJIANG / WANG LIYUAN / LUO FENG et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Space-time attention LSTM vehicle trajectory prediction method based on position-speed

    SONG XIULAN / YANG LUSHENG / DONG ZHAOHANG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Intelligent Group Prediction Algorithm of GPS Trajectory Based on Vehicle Communication

    Chen, Guobin / Wang, Lukun / Alam, Muhammad et al. | IEEE | 2021


    Attention Based Vehicle Trajectory Prediction

    Messaoud, Kaouther / Yahiaoui, Itheri / Verroust-Blondet, Anne et al. | IEEE | 2021


    Multi-modal vehicle trajectory prediction based on mutual information

    Fei, Cong / He, Xiangkun / Ji, Xuewu | IET | 2020

    Freier Zugriff