In visual SLAM, the accurate detection of a place benefits in relocalization and increased map accuracy. However, its performance is largely degraded when place appearance changes due to variation in illumination conditions, viewpoints, seasons, and presence of dynamic objects. Focusing the advantages of semantics to achieve human-like scene understanding, this research investigates the semantics aided visual place recognition methods and presents a novel visual and semantic information fusion-based place recognition framework, ViSem, for visual SLAM systems. The proposed method employs semantic matching for visually similar place match candidates and performs late fusion of point features based visual appearance matching model with the semantics based landmark matching to achieve high F1-Score for visual place recognition in drastic environmental changes. Experimental results demonstrates that ViSem achieves high robustness in comparison to the handcrafted and CNN features based methods on benchmark datasets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    ViSem: A Visual and Semantic Information Fusion Based Place Recognition for Long Term Autonomous Navigation


    Beteiligte:
    Arshad, Saba (Autor:in) / Park, Tae-Hyoung (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    1499765 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Autonomous aerial navigation using monocular visual‐inertial fusion

    Lin, Yi / Gao, Fei / Qin, Tong et al. | British Library Online Contents | 2018


    FUSION FRAMEWORK OF NAVIGATION INFORMATION FOR AUTONOMOUS NAVIGATION

    SHASHUA AMNON / SHALEV SHWARTZ SHAI / SHAMMAH SHAKED et al. | Europäisches Patentamt | 2023

    Freier Zugriff


    FUSION FRAMEWORK OF NAVIGATION INFORMATION FOR AUTONOMOUS NAVIGATION

    SHASHUA AMNON / SHALEV-SHWARTZ SHAI / SHAMMAH SHAKED et al. | Europäisches Patentamt | 2025

    Freier Zugriff