Pavement cracks have a highly complex spatial structure, a low contrasting background and a weak spatial continuity, posing a significant challenge to an effective crack detection method. To precisely localize crack from an image, it is critical to effectively extract and aggregate multi-granularity context, including the fine-grained local context around the cracks (in spatial-level) and the coarse-grained semantics (in semantic-level). In this paper, we apply the dilated convolution as the backbone feature extractor to model local context, then we build a context guidance module to leverage semantic context to guide local feature extraction at multiple stages. To handle label alignment between stages, we apply the Multiple Instance Learning (MIL) strategy to align the feature between two stages. In addition, to our best knowledge, we have released the largest, most complex and most challenging Bitumen Pavement Crack (BPC) dataset. The experimental results on the three crack datasets demonstrate that the proposed method performs well and outperforms the current state-of-the-art methods. On BPC, the proposed model achieved AP 88.32% with the 16.89 M parameters under the 45.36 GFlops runing speed. Datset and code are publicly available at: https://github.com/pangjunbiao/BPC-Crack-Dataset.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modeling Multi-Granularity Context Information Flow for Pavement Crack Detection


    Beteiligte:
    Pang, Junbiao (Autor:in) / Xiong, Baocheng (Autor:in) / Wu, Jiaqi (Autor:in) / Huang, Qingming (Autor:in)


    Erscheinungsdatum :

    01.07.2025


    Format / Umfang :

    2860964 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    CCapFPN: A Context-Augmented Capsule Feature Pyramid Network for Pavement Crack Detection

    Yu, Yongtao / Guan, Haiyan / Li, Dilong et al. | IEEE | 2022


    Automatic Pavement Crack Detection by Multi-Scale Image Fusion

    Li, Haifeng / Song, Dezhen / Liu, Yu et al. | IEEE | 2019


    Multi-Scale Semantic Map Distillation for Lightweight Pavement Crack Detection

    Wang, Xin / Mao, Zhaoyong / Liang, Zhiwei et al. | IEEE | 2024


    Mathematical Morphology Based Asphalt Pavement Crack Detection

    Wei, Na / Zhao, Xiangmo / Wang, Tao et al. | ASCE | 2009


    Pavement crack detection using the Gabor filter

    Salman, M. / Mathavan, S. / Kamal, K. et al. | IEEE | 2013