Progress in single-sensor, single-object tracking has been greatly facilitated by the existence of a systematic, rigorous, and yet practical engineering statistics that supports the development of new concepts. Surprisingly, until recently no similar engineering statistics has been available for multi-sensor, multi-object tracking. The author describes the Bayes filtering equations (the theoretical basis for all optimal single-sensor, single-object tracking) and explain why their generalization to multisensor-multitarget problems requires systematic engineering statistics-i.e., finite-set statistics (FISST). He concludes by summarising the main concepts of FISST-in particular, the multisensor-multitarget differential and integral calculus that is its core.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Engineering statistics for multi-object tracking


    Beteiligte:
    Mahler, R. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    787232 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Engineering Statistics for Multi-Object Tracking

    Mahler, R. / IEEE Computer Society | British Library Conference Proceedings | 2001


    Using order statistics for object tracking

    Werner, M. / von Seelen, W. | IEEE | 1997



    Multiple-Object Space Surveillance Tracking Using Finite-Set Statistics

    DeMars, Kyle J. / Hussein, Islam I. / Frueh, Carolin et al. | AIAA | 2015


    Multi-sensor multi-object tracking

    ORON SHAUL | Europäisches Patentamt | 2020

    Freier Zugriff