The problem of underdetermined blind source separation is addressed. An advanced classification method based upon competitive learning is proposed for automatically determining the number of active sources over the observation. Its introduction in underdetermined blind source separation successfully overcomes the drawback of an existing method, in which the goal of separating more sources than the number of available mixtures is achieved by exploiting the sparsity of the nonstationary sources in the time-frequency domain. Simulation studies are presented to support the proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A modified underdetermined blind source separation algorithm using competitive learning


    Beteiligte:
    Luo, Y. (Autor:in) / Chambers, J.A. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    315630 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Modified Underdetermined Blind Source Separation Algorithm using Competitive Learning

    Luo, Y. / Chambers, J. A. / IEEE | British Library Conference Proceedings | 2003


    An Image Processing Approach for Underdetermined Blind Separation of Nonstationary Sources

    Abed-Meraim, K. / Linh-Trung, N. / Sucic, V. et al. | British Library Conference Proceedings | 2003


    An image processing approach for underdetermined blind separation of nonstationary sources

    Abed-Meraim, K. / Linh-Trung, N. / Sucic, V. et al. | IEEE | 2003


    Implementation of Infomax ICA Algorithm for Blind Source Separation

    Moreno, L. Noe Oliva / Arce, Miguel A. Alemán / Lamont, Jair García | IEEE | 2008