In the quickly changing environment such as IoT, it is highly desirable to design a QoS-aware strategy to allocate the transmission power. In this paper, we apply the machine learning (ML) methodology to solve such a problem for a D2D network where the nodes are distributed following the conditional Poisson point process (PPP). The training is conducted in the feed-forward neural network (FNN).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Machine Learning for QoS-Aware Fairness of a D2D Network


    Beteiligte:
    Liu, Xian (Autor:in) / Huang, Changcheng (Autor:in)


    Erscheinungsdatum :

    01.05.2020


    Format / Umfang :

    323242 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Fairness-Aware UAV Trajectory Design with Reinforcement Learning

    Xu, Bowei / Peng, Liang / Wang, Xiaoxiang et al. | Springer Verlag | 2022


    Buffer-Aware Scheduling for UAV Relay Networks with Energy Fairness

    Emami, Yousef / Li, Kai / Tovar, Eduardo | IEEE | 2020



    Fairness-Aware Game Theoretic Approach for Service Management in Vehicular Clouds

    Aloqaily, Moayad / Kantarci, Burak / Mouftah, Hussein T. | IEEE | 2017


    Fairness-Aware Resource Allocation in Relay-Enhanced TD-LTE-A Systems

    Wu, Xuanli / Pei, Yujie / Labeau, Fabrice et al. | IEEE | 2016