State-of-the-art (SoTA) object detection models and their accuracy have been improved by a large margin via CNNs (Convolutional Neural Networks); however, these models still perform poorly for small road objects. Moreover, the SoTA models are mainly trained on public benchmark datasets such as MS COCO, which include more complicated backgrounds and thus make them robust for object detection. However, for surveillance or road videos, their monotone backgrounds make these SoTA detectors background-over-fitted. In applications such as autonomous driving or traffic flow estimation, the background-over-fitting problem will increase various challenges and lead to accuracy degradation in object detection. One novelty of this paper is to propose an MBA (Mixed Background Augmentation) method to improve detection accuracy without adding new labeling efforts and any pre-training processes. During the inference stage, only one input image is needed for vehicle detection without involving background subtraction. Another novelty of this paper is the design of an efficient MSP (Mixed Stage Partial) network to detect objects more accurately and efficiently from surveillance videos. Extensive experiments on KITTI and UA-DETRAC benchmarks show that the proposed method achieves the SoTA results for highly accurate and efficient vehicle detection. The detection accuracy is improved from 78.53% to 83.59% with 25.7 $fps$ on the UA-DETRAC data set. The implementation code is available at https://github.com/pingyang1117/MSPNet.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mixed Stage Partial Network and Background Data Augmentation for Surveillance Object Detection


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.12.2022


    Format / Umfang :

    3988227 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LANGUAGE-BASED OBJECT DETECTION AND DATA AUGMENTATION

    SCHULTER SAMUEL / AICH ABHISHEK / GOPALKRISHNA VIJAY KUMAR BAIKAMPADY | Europäisches Patentamt | 2025

    Freier Zugriff

    OBJECT DETECTION APPARATUS AND DATA AUGMENTATION METHOD THEREOF

    Europäisches Patentamt | 2025

    Freier Zugriff

    Pattern-Aware Data Augmentation for LiDAR 3D Object Detection

    Hu, Jordan S.K. / Waslander, Steven L. | IEEE | 2021


    DRIVER IDENTIFICATION SYSTEM USING CONVOLUTIONAL NEURAL NETWORK WITH BACKGROUND REMOVAL-BASED INFRARED DATA AUGMENTATION

    Kim, Sanghyuk / Lee, Yunsoo / Ahn, Namhyun et al. | British Library Conference Proceedings | 2018


    Surveillance Data Object (Revisited)

    Whitman, Dave | IEEE | 2010

    Freier Zugriff