In the evaluation of the Ziv–Zakai bound (ZZB) for target parameter estimation in distributed multiple-input–multiple-output (MIMO) radar systems, existing models often rely on idealized assumptions, such as completely orthogonal waveforms and temporally white interference, which may not reflect real-world conditions. This article addresses these limitations by developing the ZZB for more realistic scenarios. We derive the ZZBs for joint target position and velocity estimation under both stochastic and deterministic signal models. The derived bounds distinguish the minimum error probabilities with an exact formula for the stochastic model and a saddle point approximation for the deterministic model. Simulation studies confirm that these ZZBs serve as robust lower bounds for the mean-square error (MSE) of maximum a posteriori estimates across diverse signal-to-noise ratios (SNRs). To reduce computational demands, we introduce a Gaussian approximation method based on the moment-matching principle to estimate the minimum error probabilities for both models, significantly reducing complexity while preserving accuracy. Additionally, under ideal conditions, we simplify the ZZBs for both models into a weighted sum of the a priori covariance and the expectation of the conditional Cramér–Rao bound, where the weights depend on the overall SNR. This formulation offers insights into threshold phenomena and yields substantial computational benefits. Our results indicate that this matrix-based approach can achieve time savings of more than one order of magnitude compared to the integral-based ZZB calculation methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Ziv–Zakai Bound for Target Parameter Estimation in Distributed MIMO Radar Systems


    Beteiligte:
    Liang, Yuanyuan (Autor:in) / Wen, Gongjian (Autor:in) / Luo, Dengsanlang (Autor:in) / Li, Runzhi (Autor:in) / Li, Boyun (Autor:in)


    Erscheinungsdatum :

    01.10.2024


    Format / Umfang :

    1376404 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Target detection and parameter estimation for MIMO radar systems

    Luzhou Xu, / Jian Li, / Stoica, P. | IEEE | 2008



    Persymmetric adaptive target detection with distributed MIMO radar

    Jun Liu / Hongbin Li / Himed, Braham | IEEE | 2015


    Ziv-Zakai Bound and Multicorrelator Compression for a Galileo E1 Meta-Signal

    Schwalm, Carolin / Enneking, Christoph / Thölert, Steffen | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2020

    Freier Zugriff

    Target Measurement Performance of Distributed MIMO Radar Systems Under Nonideal Conditions

    Liang, Yuanyuan / Wen, Gongjian / Zhu, Lingxiao et al. | IEEE | 2024