State of health (SOH) is a key parameter to assess lithium-ion battery feasibility for secondary usage applications. SOH estimation based on machine learning has attracted great attention in recent years and holds potentials for battery informatization and cloud battery management techniques. In this article, a comprehensive study of the data-driven SOH estimation methods is conducted. A new classification for health indicators (HIs) is proposed where the HIs are divided into the measured variables and calculated variables. To illustrate the significance of data preprocessing, four noise reduction methods are assessed in the HIs extraction process; different feature selection methods, including filter-based method, wrapper-based method, and fusion-based method, are applied to select HIs subsets. The four widely used machine learning algorithms, including artificial neural network, support vector machine, relevance vector machine, and Gaussian process regression (GPR), are applied and compared. In order to evaluate the estimation performance in potential real usages under future big data era, the three HIs selection methods and four machine learning methods are evaluated using three public data sets and two estimation strategies. The results show that the combination of the fusion-based selection method and GPR has an overall superior estimation performance in terms of both accuracy and computational efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning


    Beteiligte:
    Hu, Xiaosong (Autor:in) / Che, Yunhong (Autor:in) / Lin, Xianke (Autor:in) / Onori, Simona (Autor:in)


    Erscheinungsdatum :

    01.06.2021


    Format / Umfang :

    5171758 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Travel time prediction method based on multi-feature selection and fusion

    GU JUNHUA / LI WENYAO | Europäisches Patentamt | 2024

    Freier Zugriff


    Machine Health Prediction Enhancement Using Machine Learning

    Kalamdani, Rajeev / Jalluri, Chandra / Hermiller, Stephen et al. | British Library Conference Proceedings | 2017


    Machine Health Prediction Enhancement Using Machine Learning

    Jalluri, Chandra / Kalamdani, Rajeev / Clifton, Robert et al. | SAE Technical Papers | 2017


    Beam Prediction for mmWave Massive MIMO using Adjustable Feature Fusion Learning

    Yang, Sicheng / Ma, Jianpeng / Zhang, Shun et al. | IEEE | 2022