The installation of both residential and commercial photovoltaic cells (PVs) has been growing rapidly. In either situation maximising the efficiency of the PVs is critical this can be hindered by soiling, cracks, and other defects. Detecting such faults through regular inspections is an essential yet costly task for small and large scale PVs deployments. The research presented in this paper proposes a drone-based system that navigates a PVs installation, capturing an image and the location of the panels. Machine Learning is then used to detect any instances of soiling or visual faults, these locations can then be used by a cleaning robot or a maintenance team depending on the type of damage or soiling. The proposed approach is evaluated using real deployed PV cell arrays, demonstrating it as an effective solution for detecting PV soiling.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Automated Framework for Drone-based Solar Panel Soiling Detection


    Beteiligte:
    Brydon, Zac (Autor:in) / Lee, Kevin (Autor:in) / Hassani, Alireza (Autor:in)


    Erscheinungsdatum :

    17.11.2023


    Format / Umfang :

    6541874 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    STATIC SOILING DETECTION AND CORRECTION

    GUERREIRO RUI | Europäisches Patentamt | 2018

    Freier Zugriff

    Drone system for solar panel defect detection using YOLO

    PARK KYUNG NAM | Europäisches Patentamt | 2022

    Freier Zugriff

    SOLAR PANEL COOLING SYSTEM USING DRONE

    Europäisches Patentamt | 2019

    Freier Zugriff

    SOLAR PANEL COOLING SYSTEM USING DRONE

    KIM SUNG CHAN / HAN CHANG SE / LM IN KYO | Europäisches Patentamt | 2019

    Freier Zugriff

    Solar Panel Cleaning System Using Drone

    Europäisches Patentamt | 2024

    Freier Zugriff