The safety validation of motion planning algorithms for automated vehicles requires a large amount of data for virtual testing. Currently, this data is often collected through real test drives, which is expensive and inefficient, given that only a minority of traffic scenarios pose challenges to motion planners. We present a workflow for generating a database of challenging and safety-critical test scenarios that is not dependent on recorded data. First, we extract a large variety of road networks across the globe from OpenStreetMap. Subsequently, we generate traffic scenarios for these road networks using the traffic simulator SUMO. In the last step, we increase the criticality of these scenarios using nonlinear optimization. Our generated scenarios are publicly available on the CommonRoad website.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Scenario Factory: Creating Safety-Critical Traffic Scenarios for Automated Vehicles


    Beteiligte:


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    2680504 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Generating Traffic Safety Test Scenarios for Automated Vehicles using a Big Data Technique

    So, Jaehyun Jason / Park, Inseon / Wee, Jeongran et al. | Springer Verlag | 2019


    Generating Traffic Safety Test Scenarios for Automated Vehicles using a Big Data Technique

    So, Jaehyun Jason / Park, Inseon / Wee, Jeongran et al. | Online Contents | 2019


    Scenario-Based Safety Assessment Framework for Automated Vehicles

    Ploeg, J. / de Gelder, E. / Slavík, M. et al. | ArXiv | 2021

    Freier Zugriff

    A systematic review of safety-critical scenarios between automated vehicles and vulnerable road users

    Deshmukh, Aditya / Wang, Zifei / Gunn, Aaron et al. | ArXiv | 2023

    Freier Zugriff