The challenges derived from the data-intensive nature of machine learning in conjunction with technologies that enable novel paradigms such as V2X and the potential offered by 5G communication, allow and justify the deployment of Federated Learning (FL) solutions in the vehicular intrusion detection domain. In this paper, we investigate the effects of integrating FL strategies into the machine learning-based intrusion detection process for on-board vehicular networks. Accordingly, we propose a FL implementation of a state-of-the-art Intrusion Detection System (IDS) for Controller Area Network (CAN), based on LSTM autoencoders. We thoroughly evaluate its detection efficiency and communication overhead, comparing it to a centralized version of the same algorithm, thereby presenting it as a feasible solution.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evaluating the Impact of Privacy-Preserving Federated Learning on CAN Intrusion Detection


    Beteiligte:


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    618504 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Privacy-Preserving Resource Allocation for Asynchronous Federated Learning

    Chen, Xiaojing / Zhou, Zheer / Ni, Wei et al. | IEEE | 2024


    Evaluating Differential Privacy in Federated Continual Learning

    Ouyang, Junyan / Han, Rui / Liu, Chi Harold | IEEE | 2023


    FedGRU: Privacy-preserving Traffic Flow Prediction via Federated Learning

    Liu, Yi / Zhang, Shuyu / Zhang, Chenhan et al. | IEEE | 2020