We propose a fast ransomware detection method using Memory-Assisted-Stochastic-Dynamic-Fixed-Point arithmetic using a four-layer Deep Belief Network (DBN) structure. The method stores random bit-streams in memory to produce efficient cross-correlation for the stochastic computation in FPGA. The memory technique for stochastic computation with dynamic fixed-point arithmetic trains the Deep Belief Network (DBN) to detect ransomwares with 91% precision rate and detection speed of.006ms. The method represents a promising step toward improving ransomware detection in devices with limited power and memory resources such as the Internet of Things (IoTs).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Ransomware Detection Using Limited Precision Deep Learning Structure in FPGA


    Beteiligte:


    Erscheinungsdatum :

    01.07.2018


    Format / Umfang :

    1572958 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Enhancing Cybersecurity Resilience: Real-time Ransomware Detection using AES Algorithm on Kafka Stream

    Khatuna Jannat, Umma / Kumar, M.Mohan / Arif Islam, Syed | IEEE | 2023


    Comparative Analysis of Machine Learning Models: Ransomware Severity Prediction Using MITRE Cyber Analytics Repository

    Azhar, Mohammed Omar / Jabin Oyshee, Farha / Monir, Md Fahad et al. | IEEE | 2024


    Guarding the Galaxy: Satellite Ransomware and Countermeasures

    Hansen, Petersen / Henry, Wayne C. / Reith, Mark G. et al. | IEEE | 2024


    Attacking Ground Vehicles with Ransomware: Watch the Horizon

    Parker, Charles | SAE Technical Papers | 2022


    An FPGA-Accelerated Design for Deep Learning Pedestrian Detection in Self-Driving Vehicles

    Moussawi, Abdallah / Haddad, Kamal / Chahine, Anthony | ArXiv | 2018

    Freier Zugriff