This paper studies the problem of aerial maneuvering control, which is formulated as a multi-objective sequential decision making problem, and is solved by the Multi-Objective Monte-Carlo Tree Search (MOMCTS) algorithm which requires little prior knowledge about the specific maneuvering procedure, and achieves the desired maneuvering trajectory through multi-objective optimization. The proposed method is validated by simulation based on the six degree of freedom aerodynamic model of a real trainer aircraft in the case of loop maneuvering. The performance of MOMCTS approach is compared with a traditional method combining trajectory generation and PID control. Experimental results show that MOMCTS outperforms the baseline method at the cost of a lightly decreased robustness.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Objective Monte-Carlo Tree Search based aerial maneuvering control


    Beteiligte:
    Xiang Chen (Autor:in) / Xinguo Zhang (Autor:in) / Weijia Wang (Autor:in) / Wenling Wei (Autor:in)


    Erscheinungsdatum :

    01.08.2016


    Format / Umfang :

    284311 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pareto-Optimal Transit Route Planning With Multi-Objective Monte-Carlo Tree Search

    Weng, Di / Chen, Ran / Zhang, Jianhui et al. | IEEE | 2021



    Multi-Agent Assisted Shortest Path Planning using Monte Carlo Tree Search

    Bhadoriya, Abhay Singh / Darbha, Swaroop / Rathinam, Sivakumar et al. | AIAA | 2023


    Multi-Agent Assisted Shortest Path Planning Using Monte Carlo Tree Search

    Bhadoriya, Abhay Singh / Darbha, Swaroop / Rathinam, Sivakumar et al. | TIBKAT | 2023


    Multi-Agent Assisted Shortest Path Planning Using Monte Carlo Tree Search

    Bhadoriya, Abhay Singh / Darbha, Swaroop / Rathinam, Sivakumar et al. | TIBKAT | 2023