When the conventional hybrid frequency (HF) modulation strategy applies to the asymmetric cascaded H-bridge (ACHB) inverter with dc voltage in a ratio of 1:1:2, there are uneven problems of switching loss in low-voltage cells and output power over all operating cells. Thus, a modified HF based on a dual-layer power balance (MHF-DPB) modulation strategy was presented. First, step modulation was still applied to a high-voltage cell on the basis of the conventional method, but improved level-shifted pulsewidth modulation (LS-PWM) was applied to two low-voltage cells. Subsequently, the power balance between high-voltage and low-voltage cells was controlled by adjusting the conduction angles of the power switch and then the carriers of the two low-voltage cells were rotated periodically in order to realize the two low-voltage cells’ power balance. The proposed method can not only realize the power balance of cascaded cells, but also distribute the switching loss of two low-voltage cells equally. In the meantime, it reduced the total switching loss of the inverter. Finally, it was validated by simulation and experimental results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Novel Modulation Scheme for Balancing Power Distribution Among Modules in Nine-Level Asymmetric Cascaded H-Bridge Inverter


    Beteiligte:
    Gu, Jun (Autor:in) / Song, Fei (Autor:in) / Zhang, Weiguo (Autor:in) / Zhang, Ming (Autor:in) / Du, Zhibin (Autor:in)


    Erscheinungsdatum :

    01.03.2023


    Format / Umfang :

    2850294 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Cascaded Symmetrical Series Half-bridge Cells Multi-level Inverter

    Odeh, Charles Ikechukwu | Online Contents | 2016



    Modular Multi-Level Inverter Using Cascaded H-Bridges With Charge Balancing

    MATTESON ARTHUR WILLIAM / TODROMOVICH STANISLAW | Europäisches Patentamt | 2024

    Freier Zugriff