Convolutional neural network based radio frequency tomographic reconstruction is explored in this study. Due to the limited amount of sensors used in RF tomographic imaging system, analytical reconstruction such as filtered back-projection usually generates strong artifacts in the reconstructed images. The state of art algebraic reconstruction methods use prior knowledge to regularize reconstruction and reduce artifacts, but suffer from high computational complexity. Our study shows reconstruction based on convolutional neural network, a learning based approach, is effective in removing artifacts caused by limited number of sensors, and has low computational cost, which makes it suitable for real-time applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Radio Frequency Tomographic Reconstruction Based on Convolutional Neural Networks


    Beteiligte:
    Li, Jia (Autor:in) / Ewing, Robert L. (Autor:in) / Shen, Xiaoping (Autor:in)


    Erscheinungsdatum :

    01.07.2018


    Format / Umfang :

    1413610 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Efficient Binary Tomographic Reconstruction

    Roux, S. p. | British Library Online Contents | 2014


    Auroral Tomographic Reconstruction Technique

    Aso, T. | British Library Online Contents | 1995


    Tomographic reconstruction based on flexible geometric models

    Hanson, K.M. / Cunningham, G.S. / Jennings, G.R. et al. | IEEE | 1994


    GPS-based tomographic reconstruction of the ionosphere

    Ruzhin, Yu Ya | Online Contents | 1998


    GPS-based tomographic reconstruction of the ionosphere

    Ruzhin, Y. Y. / Shagimuratov, I. I. / Kunitsyn, V. E. et al. | British Library Conference Proceedings | 1998