Subdivision schemes are commonly used to obtain dense or smooth data representations from sparse discrete data. e.g., B-splines are smooth curves or surfaces that can be constructed by infinite subdivision of a polyline or polygon mesh of control points. New vertices are computed by linear combinations of the initial control points. We present a new non-linear subdivision scheme for the refinement of triangle meshes that generates smooth surfaces with minimum curvature variations. It is based on a combination of edge splitting operations and interpolation by blending circular arcs. In contrast to most conventional methods, the final mesh density may be locally adapted to the structure of the mesh. As an application we demonstrate how this subdivision scheme can be used to reconstruct missing range data of incompletely digitized 3-D objects.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Refining triangle meshes by non-linear subdivision


    Beteiligte:
    Karbacher, S. (Autor:in) / Seeger, S. (Autor:in) / Hausler, G. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    1350068 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Refining Triangle Meshes by Non-linear Subdivision

    Karbacher, S. / Seeger, S. / Hausler, G. et al. | British Library Conference Proceedings | 2001



    Wavelets for Adaptively Refined 3√2-Subdivision Meshes

    Linsen, L. / Hamann, B. / Joy, K. I. | British Library Online Contents | 2007


    Compression of 3D triangle meshes based on predictive vector quantization

    Shaoliang Meng, / Aili Wang, / Shengming Li, | IEEE | 2010


    Concentric Strips: Algorithms and Architecture for the Compression/Decompression of Triangle Meshes

    Mallon, P. / Boo, M. / Amor, M. et al. | British Library Conference Proceedings | 2002