The development of real-time traffic models is of paramount importance for the purposes of optimizing traffic flow. Inspired by the compositional model (CM) and the METANET model, this paper proposes an interval approach for macroscopic traffic modeling. We develop an interval CM (ICM) and an interval implementation of the METANET model (IMETANET) that provide a natural way of predicting traffic flows without the assumption of uniform distribution of vehicles in a cell. The interval macroscopic models are suitable for real-time applications in road networks and can be part of road traffic surveillance and control systems. The performances of the interval approaches are investigated for both the ICM and the IMETANET models. The efficiency of the interval models is demonstrated over simulated data, and as well as over real traffic data from Motorway Incident Detection and Automatic Signalling (MIDAS) data sets from the United Kingdom.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Interval Macroscopic Models for Traffic Networks


    Beteiligte:
    Gning, A (Autor:in) / Mihaylova, L (Autor:in) / Boel, R K (Autor:in)


    Erscheinungsdatum :

    01.06.2011


    Format / Umfang :

    2026535 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Interval Macroscopic Models for Traffic Networks

    Gning, A | Online Contents | 2011


    Macroscopic Traffic Flow Models

    Guerrieri, Marco / Mauro, Raffaele | Springer Verlag | 2020


    Second-Order Macroscopic Traffic Models

    Ferrara, Antonella / Sacone, Simona / Siri, Silvia | Springer Verlag | 2018


    First-Order Macroscopic Traffic Models

    Ferrara, Antonella / Sacone, Simona / Siri, Silvia | Springer Verlag | 2018