Safety is one of the essential aspects to be considered in operating self-driving vehicles. In this paper, we aim to detect lanes and vehicles from input video or image by implementing advanced image thresholding techniques to detect lanes. We also use a linear support vector machine (SVM) classifier to detect vehicles from the image or video. A convolutional neural network (CNN) uses the images with the specified lane and vehicle detection as an input. It predicts the intention of going right, left, or drive straight based on the relative car distance on the video or the image. The main idea is to integrate CNN with lane and vehicle detection modules to estimate a safety path progression for a specific amount of time from the video or image based on the relative distance from other vehicles. Simulation results are given to illustrate the effectiveness of the proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A CNN-based Path Trajectory Prediction Approach with Safety Constraints


    Beteiligte:


    Erscheinungsdatum :

    01.06.2020


    Format / Umfang :

    4497577 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Path-based trajectory prediction

    AFSHAR SEPIDEH / BHAGAT AKSHAY / LU LU et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    PATH-BASED TRAJECTORY PREDICTION

    AFSHAR SEPIDEH / BHAGAT AKSHAY / LU LU et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    PATH-BASED TRAJECTORY PREDICTION

    AFSHAR SEPIDEH / BHAGAT AKSHAY / LU LU et al. | Europäisches Patentamt | 2024

    Freier Zugriff