The exceptional progress in the field of machine learning (ML) in recent years has attracted a lot of interest in using this technology in aviation. Possible airborne applications of ML include safety-critical functions, which must be developed in compliance with rigorous certification standards of the aviation industry. Current certification standards for the aviation industry were developed prior to the ML renaissance without taking specifics of ML technology into account. There are some fundamental incompatibilities between traditional design assurance approaches and certain aspects of ML-based systems. In this paper, we analyze the current airborne certification standards and show that all objectives of the standards can be achieved for a low-criticality ML-based system if certain assumptions about ML development workflow are applied.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Toward Certification of Machine-Learning Systems for Low Criticality Airborne Applications


    Beteiligte:


    Erscheinungsdatum :

    03.10.2021


    Format / Umfang :

    1376862 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Toward Certification of Machine-Learning Systems for Low Criticality Airborne Applications

    Konstantin Dmitriev / Johann Schumann / Florian Holzapfel | NTRS | 2021


    Managing Criticality of Airborne Separation Assurance Systems Applications

    Zeitlin, A. D. / Bonnemaison, B. | British Library Conference Proceedings | 2001


    Managing Criticality of Airborne Separation Assurance Systems Applications

    Zellweger, Andres G. / Donohue, George L. | AIAA | 2001


    Toward Design Assurance of Machine-Learning Airborne Systems

    Dmitriev, Konstantin / Schumann, Johann / Holzapfel, Florian | TIBKAT | 2022


    Toward Design Assurance of Machine-Learning Airborne Systems

    Dmitriev, Konstantin / Schumann, Johann / Holzapfel, Florian | AIAA | 2022