Point set registration is an important problem in Simultaneous Localization And Mapping (SLAM). In this paper, a novel registration algorithm based on Cubature Kalman Filter (CKF) is proposed. First, the state space model (SSM) regarding two point sets with Gaussian noise is formulated. Then CKF and simulated annealing based algorithm is utilized to optimize the process recursively. Since point set registration problem in SLAM application is mainly 3D, algorithm proposed in this paper focuses on 3D rigid point set registration problem. Compared to classical method, like Iterative Closest Point (ICP), CKF based method is more robust to noise and outliers. Besides that, this algorithm does not depend much on proper initialization which is very important to ICP. In order to explore the state space more efficiently, continuous simulated annealing is used on the process noise. Compared to Unscented Kalman Filter (UKF) based registration algorithm, this algorithm can improve precision of approximating nonlinearity in measurement update. So it will converge to the desired minimum more quickly, which is very important to SLAM considering real-time requirement. Experiments on SLAM dataset validate good performance of CKF based algorithm. The results also demonstrate the proposed method outperforms ICP and UKF based methods in the presence of noise, outliers and initial misalignment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Cubature Kalman Filter based point set registration for SLAM


    Beteiligte:
    Liang Li (Autor:in) / Ming Yang (Autor:in) / Chunxiang Wang (Autor:in) / Bing Wang (Autor:in)


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    2949062 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An Adaptive Square Root Cubature Kalman Filter based SLAM Algorithm for Mobile Robots

    Cai, Jun / Zhong, Xiaolin | British Library Conference Proceedings | 2015



    A seventh‐degree cubature kalman filter

    Meng, Dong / Miao, Lingjuan / Shao, Haijun et al. | British Library Online Contents | 2018


    Spacecraft attitude estimation based on matrix Kalman filter and recursive cubature Kalman filter

    Zhang, Tao / Xu, Xiang / Wang, Zhicheng | SAGE Publications | 2018