In the realm of driving technologies, fully autonomous vehicles have not been widely adopted yet, making advanced driver assistance systems (ADAS) crucial for enhancing driving experiences. Among these, car-following behavior modeling plays a pivotal role, forming the foundation for systems that ensure safe and efficient vehicle interactions. However, current approaches often rely on fixed parameters, failing to capture the diverse social preferences and driving styles of individuals. To overcome these limitations, we propose the Editable Behavior Generation (EBG) model, a data-driven car-following model that allows for adjusting driving discourtesy levels. The framework integrates diverse courtesy calculation methods into long short-term memory (LSTM) and Transformer architectures, offering a comprehensive approach to capture nuanced driving dynamics. By integrating various discourtesy values during the training process, our model generates realistic agent trajectories with different levels of courtesy in car-following behavior. Experimental results on the naturalistic datasets showcase a reduction in Mean Squared Error (MSE) of spacing and MSE of speed compared to baselines, establishing style controllability. To the best of our knowledge, this work represents the first data-driven car-following model capable of dynamically adjusting discourtesy levels. Our model provides valuable insights for the development of ADAS that take into account drivers’ social preferences.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    EditFollower: Tunable Car Following Models for Customizable Driving Behavior


    Beteiligte:
    Chen, Xianda (Autor:in) / Han, Xu (Autor:in) / Zhu, Meixin (Autor:in) / Chu, Xiaowen (Autor:in) / Tiu, PakHin (Autor:in) / Zheng, Xinhu (Autor:in) / Wang, Yinhai (Autor:in)


    Erscheinungsdatum :

    01.07.2025


    Format / Umfang :

    2374684 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    EditFollower: Tunable Car Following Models for Customizable Adaptive Cruise Control Systems

    Chen, Xianda / Han, Xu / Zhu, Meixin et al. | ArXiv | 2024

    Freier Zugriff

    CUSTOMIZABLE ABNORMAL DRIVING DETECTION

    UCAR SEYHAN / SISBOT EMRAH AKIN / MATSUDA TOMOHIRO et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Customizable abnormal driving detection

    UCAR SEYHAN / SISBOT EMRAH AKIN / MATSUDA TOMOHIRO et al. | Europäisches Patentamt | 2024

    Freier Zugriff


    Customizable Systems

    GU JIE / GAO ZHUO | Europäisches Patentamt | 2023

    Freier Zugriff