It is a difficult problem to make drivers drowsiness detection meet the needs of real time in embedded system; meanwhile, there are still some unsolved problems like drivers’ head tilted and size of eye image not large enough. This paper proposes an efficient method to solve these problems for eye state identification of drivers’ drowsiness detection in embedded system which based on image processing techniques. This method break traditional way of drowsiness detection to make it real time, it utilizes face detection and eye detection to initialize the location of driver’s eyes; after that an object tracking method is used to keep track of the eyes; finally, we can identify drowsiness state of driver with PERCLOS by identified eye state. Experiment results show that it makes good agreement with analysis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Drivers drowsiness detection in embedded system


    Beteiligte:
    Tianyi Hong, (Autor:in) / Huabiao Qin, (Autor:in)


    Erscheinungsdatum :

    01.12.2007


    Format / Umfang :

    300757 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Drowsiness Detection for Drivers using IoT

    S S, Saranya / M N, Kavitha / M, Sivasenthil et al. | IEEE | 2023


    Drowsiness Detection System

    CRONJE JACO / HOUGH JOHANN EPHRAIM | Europäisches Patentamt | 2021

    Freier Zugriff

    A Smartphone-Based Drowsiness Detection and Warning System for Automotive Drivers

    Dasgupta, Anirban / Rahman, Daleef / Routray, Aurobinda | IEEE | 2019



    Enhancing Road Safety with AdaBoost-Based Drowsiness Detection for Drivers

    Mahmud, Tanjim / Tripura, Sajib / Karim, Md. Adnan Ul et al. | Springer Verlag | 2024