Gestures from traffic police give the authorized information, especially in some urgent situation. Thus, understanding of traffic police instruction accurately and promptly is particularly crucial for the automated driving system. However, this task is a great challenge not only because of the dynamic and diversity characteristics of the human gesture, but also the high requirement for real-time performance in each frame. We propose an online activity recognition method based on pose estimation and Graph Convolutional Networks (GCN) to recognize the traffic police gesture in frame level. The main contribution in this work is the development of an online framework based on graph convolutional networks for traffic police recognition. Our approach obtained the state-of-the-art results on Traffic Police Gesture Recognition (TPGR) dataset.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Police Gesture Recognition by Pose Graph Convolutional Networks


    Beteiligte:
    Fang, Zhijie (Autor:in) / Zhang, Wuqiang (Autor:in) / Guo, Zijie (Autor:in) / Zhi, Rong (Autor:in) / Wang, Baofeng (Autor:in) / Flohr, Fabian (Autor:in)


    Erscheinungsdatum :

    19.10.2020


    Format / Umfang :

    2092879 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TRAFFIC POLICE GESTURE RECOGNITION BY POSE GRAPH CONVOLUTIONAL NETWORKS

    Fang, Zhijie / Zhang, Wuqiang / Guo, Zijie et al. | British Library Conference Proceedings | 2020





    MG-GCT: A Motion-Guided Graph Convolutional Transformer for Traffic Gesture Recognition

    Guo, Xiaofeng / Zhu, Qing / Wang, Yaonan et al. | IEEE | 2024