Quantum computing promises significant improvements of computation capabilities in various fields, such as machine learning and complex optimization problems. Rapid technological advancements suggest that adiabatic and gate base quantum computing may see practical applications in the near future. In this work, we adopt quantum computing paradigms to develop solvers for two well-known combinatorial optimization problems in information fusion and resource management: 1) multitarget data association and weapon target assignment. These problems are NP-hard (non)linear integer programming optimization tasks, which become computationally expensive for large problem sizes. We derive the problem formulations adapted for the use in quantum algorithms and present solvers based on adiabatic quantum computing and the quantum approximative optimization algorithm. The feasibility of the models is demonstrated by numerical simulation and first experiments on quantum hardware.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Quantum Computing for Applications in Data Fusion


    Beteiligte:
    Stoos, Veit (Autor:in) / Ulmke, Martin (Autor:in) / Govaers, Felix (Autor:in)


    Erscheinungsdatum :

    01.04.2023


    Format / Umfang :

    1710314 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Applications in distributed quantum computing networks

    Jackson, D. J. / Gilliam, D. P. / Dowling, J. P. et al. | NTRS | 2001


    Remote sensing data fusion algorithms with parallel computing

    Akoguz, Alper / Kent Pinar, Sedef / Ozdemir, Adnan et al. | IEEE | 2013


    Quantum Computing for Radar Remote Sensing Applications

    Huber, Sigurd / Glatting, Kay / Krieger, Gerhard et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2021

    Freier Zugriff