This paper presents the first results of an experimental study about the possibility to implement basic vehicle odometry, road structure mapping and moving object tracking functionalities by combining a compact automotive radar sensor with appropriate digital signal processing algorithms. In the context of the study, radar raw data sets for real-world road scenarios, including static and moving objects, are first collected from a vehicle-mounted, single-chip 77 GHz automotive radar transceiver and stored on a hard disk. The acquired raw data sets are then processed offline by an algorithm which attempts to detect stationary and moving road objects, estimate odometry data for the radar vehicle and for the detected moving objects and build a map of the detected road structures. Considerations on the applicability of the presented approach and possible extensions of the research work are discussed in conclusion.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Simultaneous Odometry, Mapping and Object Tracking with a Compact Automotive Radar


    Beteiligte:
    Arnone, Luigi (Autor:in) / Vicari, Paolo (Autor:in)


    Erscheinungsdatum :

    01.07.2019


    Format / Umfang :

    764042 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Efficient Deep-Learning 4D Automotive Radar Odometry Method

    Lu, Shouyi / Zhuo, Guirong / Xiong, Lu et al. | IEEE | 2024


    Automotive visual odometry

    Buczko, Martin / Shaker Verlag | TIBKAT | 2018


    Deep 4D Automotive Radar-Camera Fusion Odometry with Cross-Modal Transformer Fusion

    Zhuo, Guirong / Xiong, Lu / Zhou, Mingyu et al. | SAE Technical Papers | 2023


    Radar odometry for vehicle

    OH JINHYOUNG / LAKEHAL-AYAT MOHSEN | Europäisches Patentamt | 2020

    Freier Zugriff

    Radar odometry with recursive-RANSAC

    Quist, Eric B. / Niedfeldt, Peter C. / Beard, Randal W. | IEEE | 2016