Vehicle occlusion in congested ground traffic situations causes performance degradation in visual traffic surveillance systems. In this paper, we present a Hidden Markov Model (HMM) -based vehicle detection algorithm that is capable of handling vehicle occlusion and detecting vehicles from image sequences. In our algorithm, we first use Principal Component Analysis (PCA) and Multiple Discriminant Analysis (MDA) to extract features from input images, and then apply HMM to classify each image into three categories (road, head and body), where categories are called states in this paper. Finally we detect vehicles by analyzing the extracted state sequences. Results of experiments demonstrate that our algorithm is effective in congested traffic situations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An HMM-Based Algorithm for Vehicle Detection in Congested Traffic Situations


    Beteiligte:
    Yin, Ming (Autor:in) / Zhang, Hao (Autor:in) / Meng, Huadong (Autor:in) / Wang, Xiqin (Autor:in)


    Erscheinungsdatum :

    01.09.2007


    Format / Umfang :

    3788746 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automated On-Ramp Merging System for Congested Traffic Situations

    Milanes, V / Godoy, J / Villagra, J et al. | IEEE | 2011


    Automated On-ramp Merging System for Congested Traffic Situations

    Milanes, V. / Godoy, J. / Villagra, J. et al. | Tema Archiv | 2011



    Interaction aware trajectory planning for merge scenarios in congested traffic situations

    Evestedt, Niclas / Ward, Erik / Folkesson, John et al. | IEEE | 2016


    Road traffic characteristics, driving patterns and emission factors for congested situations

    Boulter, P. G. / Barlow, T. / McCrae, I. S. et al. | TIBKAT | 2006

    Freier Zugriff