Three formulations of exact solution algorithms to the system of determined pseudorange equations are derived. It is demonstrated that pseudorange equations are hyperbolic in nature and may have two solutions, even when the emitter configuration is nonsingular. Conditions for uniqueness and for the existence of multiple solutions are derived in terms of the Lorentz inner product. The bifurcation parameter for systems of pseudorange equations is also expressed in term of the Lorentz functional. The solution is expressed as a product of the geometric dilution of precision (GDOP) matrix, representing the linear part of the solution, and a vector of nonlinear term. Using this formulation stability of solutions is discussed.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On the exact solutions of pseudorange equations


    Beteiligte:
    Chaffee, J. (Autor:in) / Abel, J. (Autor:in)


    Erscheinungsdatum :

    01.10.1994


    Format / Umfang :

    891272 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    On the Exact Solutions of Pseudorange Equations

    Chaffee, J. | Online Contents | 1994


    ON SOLVING THE MULTI-CONSTELLATION PSEUDORANGE EQUATIONS

    Juang, J.-C. | British Library Online Contents | 2010


    UNIVERSALLY CONVERGENT STATISTICAL SOLUTION OF PSEUDORANGE EQUATIONS

    Wolfe, J. D. / Speyer, J. L. | British Library Online Contents | 2003



    ON SOLVING THE MULTI-CONSTELLATION PSEUDORANGE EQUATIONS

    Juang, Jyh-Ching | Online Contents | 2010