Traffic flow prediction is an important part of intelligent transportation system (ITS). Accurate traffic flow prediction information can provide reliable reference for traffic management decision-makers, effectively reduce traffic congestion, reduce vehicle exhaust pollution, save energy and facilitate the travel of the people. Most of the existing traffic flow prediction models simplify the traffic flow change process into a linear and stable process and ignore the influence of weather conditions on traffic flow, which will lead to large prediction deviation. In order to improve the accuracy of traffic flow prediction, this paper proposes an ensemble learning method based on ET and AdaBoost for fusing traffic and meteorological data under the non-stationary environment to predict the changes of traffic flow. The experiment is based on real traffic and meteorological data, and the results show that the proposed ensemble method is superior to the baseline methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Flow Prediction Based on Traffic and Meteorological Data Fusion in Non-stationary Environments


    Beteiligte:
    Xiao, Hongbo (Autor:in) / Xiao, Jianhua (Autor:in) / Deng, Xiaowu (Autor:in) / Li, Liyun (Autor:in)


    Erscheinungsdatum :

    01.12.2021


    Format / Umfang :

    1353738 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep learning traffic flow prediction method based on meteorological information fusion

    WANG SEN / LIU WENJIE / LI ZHIGANG | Europäisches Patentamt | 2024

    Freier Zugriff

    Traffic flow stationary sequence data fusion prediction method based on cloud model

    DONG JIANHUA | Europäisches Patentamt | 2024

    Freier Zugriff

    Traffic speed prediction method based on traffic flow data fusion and system

    LIU DUANYANG / XU XINBO / XU WEI | Europäisches Patentamt | 2021

    Freier Zugriff


    Non-Stationary Traffic Flow Prediction Using Deep Learning

    Koesdwiady, Arief / Bedawi, Safaa / Ou, Chaojie et al. | IEEE | 2018