Traffic sign recognition is an important topic in driver assistant system and intelligent autonomous vehicles. Traffic sign detection is a critical step, whose performance greatly affect the performance and computation cost of traffic sign recognition. In this paper, we propose a traffic sign detection method based on a scoring SVM model. First, traffic sign color and color gradient are extracted according to their color characteristics. Then, the shape of traffic sign is computed by a voting scheme, yielding shape score maps. After that, the score maps of traffic signs are used to train a SVM model. Compared with single traffic sign score value, the scoremapis more efficient to verify the existence of a traffic sign. Finally, the trained SVM model is used to detect traffic signs. Experiments show that the proposed method is more effective than the voting based method to detect traffic signs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust traffic sign detection in complex road environments


    Beteiligte:
    Tian, Bin (Autor:in) / Chen, Ran (Autor:in) / Yao, Yanjie (Autor:in) / Li, Naiqiang (Autor:in)


    Erscheinungsdatum :

    01.07.2016


    Format / Umfang :

    654205 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic Sign Perception in Road Environments

    De la Escalera, A. / Moreno, L. / Armingol, J. M. et al. | British Library Conference Proceedings | 1994


    Road traffic sign detection and classification

    Escalera, A. de la / Moreno, L.E. / Salichs, M.A. et al. | Tema Archiv | 1997


    Traffic Road Sign Detection and Classification

    Mehdi Fartaj / Sedigheh Ghofrani | DOAJ | 2024

    Freier Zugriff

    Fast and robust traffic sign detection

    Soetedjo, A. / Yamada, K. | Tema Archiv | 2005


    Mask R-CNN for Robust and Accurate Traffic Sign Detection in Dynamic Environments

    Rohini, P. / Harsh, V. / Lakshmi, P. Sree | Springer Verlag | 2025