This paper proposed a multi-constraint developed rapidly exploring random tree (RRT) algorithm to solve the problem of unmanned aerial vehicles (UAVs) path planning in three-dimensional environments. On the basis of traditional RRT algorithm, corner constraint and path length constraint are considered to restrict the turn angle and path length respectively, making the generated track satisfy conditions of flight. In addition, the third order Bezier curves are used to smooth the path. Finally, four groups of contrastive simulation results show advantages of the developed RRT algorithm over the traditional one.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Three-Dimensional Path Planning for Unmanned Aerial Vehicles Based on the Developed RRT Algorithm


    Beteiligte:
    Zekui, Qin (Autor:in) / Rui, Wang (Autor:in) / Xiwang, Dong (Autor:in) / Qingdong, Li (Autor:in) / Dongyang, Fang (Autor:in) / Zhang, Ren (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    3045073 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Three-dimensional path planning for unmanned aerial vehicles based on fluid flow

    Liang, Xiao / Wang, Honglun / Li, Dawei et al. | IEEE | 2014


    Three-dimensional model-based coverage path planning method for unmanned aerial vehicles

    WANG JUN / DAI JIAJIA | Europäisches Patentamt | 2022

    Freier Zugriff

    THREE-DIMENSIONAL MODEL-BASED COVERAGE PATH PLANNING METHOD FOR UNMANNED AERIAL VEHICLES

    WANG JUN / DAI JIAJIA | Europäisches Patentamt | 2022

    Freier Zugriff

    Three-Dimensional Path Planning of Unmanned Aerial Vehicles Using Particle Swarm Optimization

    Foo, J. / Knutzon, J. / Oliver, J. et al. | British Library Conference Proceedings | 2006


    Three-Dimensional Path Planning of Unmanned Aerial Vehicles Using Particle Swarm Optimization

    Foo, Jung Leng / Knutzon, Jared / Oliver, James et al. | AIAA | 2006