Environment perception including detection, classification, tracking, and motion prediction are key enablers for automated driving systems and intelligent transportation applications. Fueled by the advances in sensing technologies and machine learning techniques, LiDAR-based sensing systems have become a promising solution. The current challenges of this solution are how to effectively combine different perception tasks into a single backbone and how to efficiently learn the spatiotemporal features directly from point cloud sequences. In this research, we propose a novel spatiotemporal attention network based on a transformer self-attention mechanism for joint semantic segmentation and motion prediction within a point cloud at the voxel level. The network is trained to simultaneously outputs the voxel level class and predicted motion by learning directly from a sequence of point cloud datasets. The proposed backbone includes both a temporal attention module (TAM) and a spatial attention module (SAM) to learn and extract the complex spatiotemporal features. This approach has been evaluated with the nuScenes dataset, and promising performance has been achieved.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Spatiotemporal Transformer Attention Network for 3D Voxel Level Joint Segmentation and Motion Prediction in Point Cloud


    Beteiligte:
    Wei, Zhensong (Autor:in) / Qi, Xuewei (Autor:in) / Bai, Zhengwei (Autor:in) / Wu, Guoyuan (Autor:in) / Nayak, Saswat (Autor:in) / Hao, Peng (Autor:in) / Barth, Matthew (Autor:in) / Liu, Yongkang (Autor:in) / Oguchi, Kentaro (Autor:in)


    Erscheinungsdatum :

    05.06.2022


    Format / Umfang :

    1241259 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    SAT3D: Slot Attention Transformer for 3D Point Cloud Semantic Segmentation

    Ibrahim, Muhammad / Akhtar, Naveed / Anwar, Saeed et al. | IEEE | 2023



    MoNet: Motion-Based Point Cloud Prediction Network

    Lu, Fan / Chen, Guang / Li, Zhijun et al. | IEEE | 2022


    Ground estimation and point cloud segmentation using SpatioTemporal Conditional Random Field

    Rummelhard, Lukas / Paigwar, Anshul / Negre, Amaury et al. | IEEE | 2017


    Voxel-based point cloud localization for smart spaces management

    Mortazavi, F. S.. / Shkedova, O.. / Feuerhake, U.. et al. | TIBKAT | 2023

    Freier Zugriff