Traffic congestion poses a significant challenge in urban areas, and deep reinforcement learning (DRL) offers an encouraging method for traffic signal control. We evaluate the DQN algorithm, with PQAS (Pressure, Queue, Average Speed) using the SUMO traffic simulator. Our results demonstrate that DQN improves traffic flow and reduces congestion compared to traditional methods. Our findings highlight the potential of DRL in developing more effective traffic signal control systems, with DQN, combined with PQAS. PQAS represents three reward functions pressure-based, queue-based, and average speed-based reward functions. emerging as a promising candidate indicating that optimizing for average speed and minimizing queue lengths are key factors in achieving efficient traffic signal control.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pressure, Queue, and Average Speed - Based Multi-Agent DQN for Optimizing Traffic Signal Control


    Beteiligte:


    Erscheinungsdatum :

    18.04.2024


    Format / Umfang :

    1216425 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimizing multi-agent based urban traffic signal control system

    Xu, Mingtao / An, Kun / Vu, Le Hai et al. | Taylor & Francis Verlag | 2019



    QUEUE DISSIPATION TIME-BASED INTERSECTION TRAFFIC SIGNAL SCHEME OPTIMIZATION METHOD

    RAO HUAN / LI LU / ZHOU DONG et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Single intersection traffic signal optimizing control method

    CAI YANGUANG / WANG HUA / CAI HAO | Europäisches Patentamt | 2015

    Freier Zugriff

    Traffic light control utilizing queue length

    Ayesh, Obadah M.A. / Samawi, Venus W. / Alnihoud, Jehad Q. | Tema Archiv | 2014