In recent decades, road traffic has increased in line with the attractiveness of cities. As a result, motorists are increasingly faced with traffic jams, which have many consequences. To find solutions to this problem, it is necessary to understand the origin of congestion. this is why this document proposes a strategy for managing intersections by controlling traffic signals at an intersection aimed at reducing the rate of congestion where we present a deep reinforcement learning (Deep RL) model that is a development and implementation work of the deep Q-learning algorithm that manages an agent in a simulated traffic environment using the SUMO (Simulation of Urban Mobility) traffic Road Simulator.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Road Traffic: Deep Q-learning Agent Control Traffic lights in the intersection.


    Beteiligte:


    Erscheinungsdatum :

    18.05.2022


    Format / Umfang :

    425197 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intersection traffic command system replacing traffic lights

    DUAN LE | Europäisches Patentamt | 2020

    Freier Zugriff

    Intelligent control system of intersection traffic lights

    ZHAO SHUYA / TAO JIETING / GUO SHANNING et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    cross road traffic lights

    PARK JUNG HYUN | Europäisches Patentamt | 2024

    Freier Zugriff

    Road surface traffic lights

    PARK BUM JIN / KIM HYOUNG SOO / KIM YOUNG MIN et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    A Deep Reinforcement Learning Agent for Traffic Intersection Control Optimization

    Garg, Deepeka / Chli, Maria / Vogiatzis, George | IEEE | 2019