Reducing commercial aviation fatalities is just one of the complex problems that has been solving for business, government, and military leaders for over 100 years. Through devotion, candor, courage, and character, original solutions were produced where there are no road maps. Most flight-related fatalities stem from a loss of “airplane state awareness.” That is, ineffective attention management on the part of pilots who may be distracted, sleepy or in other dangerous cognitive states. This work focuses on predicting one of these cognitive states, thereby helping the pilot to manage the flight effectively. This work applies machine learning algorithm, Support Vector Machine (SVM) to predict the cognitive state of the pilot during flight.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reducing Commercial Aviation Fatalities Using Support Vector Machines


    Beteiligte:


    Erscheinungsdatum :

    01.11.2019


    Format / Umfang :

    932416 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Commercial Diving Fatalities

    M. E. Bradley | NTIS | 1984


    Traffic fatalities prediction based on support vector machine

    Ting Li / Yunong Yang / Yonghui Wang et al. | DOAJ | 2016

    Freier Zugriff


    Drugs of Abuse in Aviation Fatalities. 1. Marijuana

    D. J. Lacefield / P. A. Roberts / P. M. Grape | NTIS | 1985