With the development of autonomous vehicles and intelligent robots, visual simultaneous localization and mapping (SLAM) has attracted great attentions. Most existing visual SLAM systems assume that the objects are stationary in static environments. However, in the real world, there are many objects that are non-stationary in dynamic environments, which will cause performance degradation of visual SLAM systems. In this paper, to address this issue, we propose a novel visual SLAM system based on multi-task deep neural networks. Specifically, we apply multi-task deep neural networks to extract oriented keypoints and perceive dynamic semantic regions, which are used to perform outlier rejection in the SLAM system. We evaluate our method on public datasets, and the results show that our method outperforms existing visual SLAM systems. The presentation video url is: https://youtu.be/qGE1OvaJvV0.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Novel Visual SLAM System for Autonomous Vehicles in Dynamic Environments


    Beteiligte:
    Zeng, Xinyu (Autor:in) / He, Ying (Autor:in) / Yu, F. Richard (Autor:in) / Zhou, Guang (Autor:in)


    Erscheinungsdatum :

    10.10.2023


    Format / Umfang :

    3256380 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Visual SLAM for Autonomous Ground Vehicles

    Lategahn, Henning / Geiger, Andreas / Kitt, Bernd | Tema Archiv | 2011


    RWT-SLAM: Robust Visual SLAM for Weakly Textured Environments

    Peng, Qihao / Zhao, Xijun / Dang, Ruina et al. | IEEE | 2024


    Tree-SLAM: Localization and Mapping in Dense Forest Environments for Autonomous Vehicles

    Heupel, Christian / Wolf, Patrick / Berns, Karsten | Springer Verlag | 2024



    Stereo Graph-SLAM for Autonomous Underwater Vehicles

    Carrasco, Pep Lluis Negre / Bonin-Font, Francisco / Codina, Gabriel Oliver | Springer Verlag | 2015