Vehicle tracking is an essential topic in autonomous driving. Currently most systems rely on radars and lidars to perform vehicle tracking. In this paper, we present a novel cross traffic vehicle tracking system with several unique contributions. First of all, it employs a state machine to manage the life cycles of particle filters, resulting in higher tracking robustness. Secondly, the entire software framework is designed to be extensible to support multiple sensors and tracking algorithms. Lastly, we implemented a sensor-vehicle co-simulator to evaluate the tracking performance. We show through experiments that our vehicle tracking system can track multiple vehicles up to 170m away with less than 1m average positional error. We also show that our proposed state machine improves tracking rate under frequent occlusion.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A State Machine-based Multi-Vehicle Tracking Framework with Dual-Range Radars


    Beteiligte:
    Huang, Jiawei (Autor:in) / Ma, Lichao (Autor:in)


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    2261817 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A STATE MACHINE-BASED MULTI-VEHICLE TRACKING FRAMEWORK WITH DUAL-RANGE RADARS

    Huang, Jiawei / Ma, Lichao | British Library Conference Proceedings | 2018


    Steady-state tracking with FMCW radars

    McDonough, Michael / Blair, W. Dale | IEEE | 2018



    Range Instrumentation Radars

    Nessmith, Josh T. | IEEE | 1976