In this paper, an optimization technique is developed for providing the globally optimal solution to the maximum likelihood (ML) method for the bearing-only geolocation problem. The ML formulation does not require the a priori knowledge of the distances between the sensor and the emitter. It is formulated as a non-concave fractional programming problem, and a branch and bound algorithm is developed for solving for the globally optimal solution. The algorithm has the property of global convergence and the advantage of computational efficiency. Computer simulations are used to demonstrate the performance of the proposed techniques and comparisons to other methods and the Cramer-Rao lower bounds (CRLBs) are also provided.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Globally Optimal Solution to Maximum Likelihood Bearing-Only Geolocation


    Beteiligte:
    Zhou, Yifeng (Autor:in)


    Erscheinungsdatum :

    01.09.2017


    Format / Umfang :

    214025 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Approximate Maximum Likelihood Radio Emitter Geolocation With Time-Varying Doppler

    Bottomley, Gregory E. / Cairns, Douglas A. | IEEE | 2019



    6.0203 Maximum Likelihood Geolocation using a Ground Moving Target Indicator (GMTI) Report

    Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2002


    Closed-Form Solution of Hyperbolic Geolocation Equations

    Bakhoum, E.G. | Online Contents | 2006