The problem of image-based visual servoing (IBVS) of an aerial robot using deep-learning-based keypoint detection is addressed in this article. A monocular RGB camera mounted on the platform is utilized to collect the visual data. A convolutional neural network (CNN) is then employed to extract the features serving as the visual data for the servoing task. This paper contributes to the field by circumventing not only the challenge stemming from the need for man-made marker detection in conventional visual servoing techniques, but also enhancing the robustness against undesirable factors including occlusion, varying illumination, clutter, and background changes, thereby broadening the applicability of perception-guided motion control tasks in aerial robots. Additionally, extensive physics-based ROS Gazebo simulations are conducted to assess the effectiveness of this method, in contrast to many existing studies that rely solely on physics-less simulations. A demonstration video is available at https://youtu.be/Dd2Her8Ly-E.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Visual Servoing of an Aerial Robot Using Keypoint Feature Extraction


    Beteiligte:


    Erscheinungsdatum :

    14.05.2025


    Format / Umfang :

    1540947 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Visual Servoing for Aerial Vegetation Sampling Systems

    Zahra Samadikhoshkho / Michael G. Lipsett | DOAJ | 2024

    Freier Zugriff

    Survey of Robot Visual Servoing

    Zhao, Q.-j. / Lian, G.-y. / Sun, Z.-q. | British Library Online Contents | 2001


    Visual Servoing without Feature Correspondences Using Eigenspace Method

    Noguchi, T. / Deguchi, K. | British Library Online Contents | 1996


    Adaptive Visual Servoing Using a Dynamic Feature Sensitivity Matrix

    Capson, D. W. / Jarabek, M. / Canadian Society for Mechanical Engineering | British Library Conference Proceedings | 1998


    Cable-Driven Parallel Robot Accuracy Improving Using Visual Servoing

    Ennaiem, Ferdaws / Chaker, Abdelbadiâ / Sandoval, Juan et al. | Springer Verlag | 2022